Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.322
Filtrar
1.
Int J Biol Macromol ; : 131843, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663701

RESUMO

Highly oxidative reactive oxygen species (ROS) attack protein structure and regulate its functional properties. The molecular structures and functional characteristics of egg white (EW) protein (EWP) during 28 d of aerobic or anaerobic storage were explored to investigate the "self-driven" oxidation mechanism of liquid EW mediated by endogenous ROS signaling. Results revealed a significant increase in turbidity during the storage process, accompanied by protein crosslinking aggregation. The ROS yield initially increased and then decreased, leading to a substantial increase in carbonyl groups and tyrosine content. The free sulfhydryl groups and molecular flexibility in EWP exhibited synchronicity with ROS production, reflecting the self-repairing ability of cysteine residues in EWP. Fourier-transform infrared spectroscopy indicated stable crosslinking between EWP molecules in the early oxidation stage. However, continuous ROS attacks accelerated EWP degradation. Compared with the control group, the aerobic-stimulated EWP showed a significant decrease in foaming capacity from 30.5 % to 9.6 %, whereas the anaerobic-stimulated EWP maintained normal levels. The emulsification performance exhibited an increasing-then-decreasing trend. In conclusion, ROS acted as the predominant factor causing deterioration of liquid EW, triggering moderate oxidation that enhanced the superior foaming and emulsifying properties of EWP, and excessive oxidation diminished the functional characteristics by affecting the molecular structure.

2.
Int J Biol Macromol ; : 131830, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663698

RESUMO

Over the past decades, dynamic high-pressure treatment (DHPT) executed by high-pressure homogenization (HPH) or microfluidization (DHPM) technology has received humongous research attention for starch macromolecule modification. However, the studies on starch multi-level structure alterations by DHPT have received inadequate attention. Furthermore, no review comprehensively covers all aspects of DHPT, explicitly addressing the combined effects of both technologies (HPH or DHPM) on starch's structural and functional characteristics. Hence, this review focused on recent advancements concerning the influences of DHPT on the starch multi-level structure and techno-functional properties. Intense mechanical actions induced by DHPT, such as high shear and impact forces, hydrodynamic cavitation, instantaneous pressure drops, and turbulence, altered the multi-level structure of starch for a short duration. The DHPT reduces the starch molecular weight and degree of branching, destroys short-range ordered and long-range crystalline structure, and degrades lamellar structure, resulting in partial gelatinization of starch granules. These structural changes influenced their techno-functional properties like swelling power and solubility, freeze-thaw stability, emulsifying properties, retrogradation rate, thermal properties, rheological and pasting, and digestibility. Processing conditions such as pressure level, the number of passes, inlet temperature, chamber geometry used, starch types, and their concentration may influence the above changes. Moreover, dynamic high-pressure treatment could form starch-fatty acids/polyphenol complexes. Finally, we discuss the food system applications of DHPT-treated starches and flours, and some limitations.

3.
Food Chem X ; 22: 101359, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623511

RESUMO

The purpose of the study was to explore effect of four different strains on quality characteristics of soy yogurt. The results showed that four strains were all related to the genus Lactobacillus and N1 was Lacticaseibacillus rhamnosus, N2 was Lacticaseibacillus paracasei, N3 was Lacticaseibacillus plantarum, and N4 was Lacticaseibacillus acidophilus. The result analysis of biochemical, sensory, nutritional, functional and safety properties of fermentation process and end products showed that the soy yogurt fermented with L. rhamnosus N1 had the highest isoflavone content and the lowest phytic acid content; the soy yogurt fermented with L. paracasei N2 had the highest content of free amino acids and oligosaccharides, the lowest content of trypsin inhibitors; the soy yogurt fermented with L. plantarum N3 had the lowest oil content; the soy yogurt fermented with L. acidophilus N4 had optimal functional properties. In summary, N4 was suitable as a fermentation strain for soymilk.

4.
J Sci Food Agric ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647043

RESUMO

BACKGROUND: In past years, thousands of protein-polysaccharide complexes have been investigated to modify protein characteristics and functionality in food systems. However, the interaction between pea protein isolate (PPI) and soluble soybean polysaccharide (SSPS) has not been thoroughly characterized yet. RESULTS: In the present study, the phase behavior of PPI and SSPS mixtures was analyzed as a function of PPI:SSPS mixing ratio (1:1 to 1:0.10) and pH (7.0 to 2.0), showing that these biopolymers could be electrostatically assembled at 1:1 to 1:0.25 mixing ratios and 4.0 to 3.0 pH values. Then, the characteristics of the PPI-SSPS complexes were studied before and after heating (90 °C and 30 min) by ζ-potential, surface hydrophobicity, protein solubility, particle size distribution and physical stability for 56 days. By lowering the pH and PPI:SSPS mixing ratio, the complexes showed increased solubility, changed 𝜁-potential and higher physical stability. By heating, the complexes presented increased hydrophobicity and physical stability. CONCLUSION: Overall, PPI-SSPS complexes increased the protein solubility, reduced the particle size, and changed both the ζ-potential and the surface hydrophobicity with respect to PPI control, allowing stabilization of the colloidal system and broadening the possible applications of these high-quality proteins in acidic food systems. © 2024 Society of Chemical Industry.

5.
Heliyon ; 10(7): e28408, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560111

RESUMO

The probiotic potential of Lactiplantibacillus pentosus CF-6HA isolated from traditionally fermented Aloreña table olives was analyzed in vitro and in silico. Results obtained suggested that this strain can be catalogued as "talented" bacterium exhibiting bacteriocin production with antimicrobial activity against human/animal and plant pathogens, such as Pseudomonas syringae and Verticillium dahliae. The robustness, safety and probiotic potential of L. pentosus CF-6HA was confirmed by in silico analysis. In addition, a plethora of coding genes for defense and adaptability to different life styles besides functional properties were identified. In this sense, defense mechanisms of L. pentosus CF-6HA consist of 17 ISI elements, 98 transposases and 13 temperate phage regions as well as a CRISPR (clustered regularly interspaced short palindromic repeats)/cas system. Moreover, the functionality of this strain was confirmed by the presence of genes coding for secondary metabolites, exopolysaccharides and other bioactive molecules. Finally, we demonstrated the ability of L. pentosus CF-6HA to biotransform selenite to nanoparticles (SeNPs) highlighting its potential role in selenium bioremediation to be exploited in foods, agriculture and the environment; but also for the bio-enrichment of fermented foods with selenium.

6.
Int J Biol Macromol ; 267(Pt 2): 131408, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604426

RESUMO

Using the optimal extraction conditions determined by response surface optimisation, the yield of soluble dietary fibre (SDF) modified by superfine grinding combined with enzymatic modification (SE-SDF) was significantly increased from 4.45 % ±â€¯0.21 % (natural pea dietary fibre) to 16.24 % ±â€¯0.09 %. To further analyse the modification mechanism, the effects of three modification methods-superfine grinding (S), enzymatic modification (E), and superfine grinding combined with enzymatic modification (SE)-on the structural, physicochemical, and functional properties of pea SDF were studied. Nuclear magnetic resonance spectroscopy results showed that all four SDFs had α- and ß-glycosidic bonds. Fourier transform infrared spectroscopy and X-ray diffraction spectroscopy results showed that the crystal structure of SE-SDF was most severely damaged. The Congo red experimental results showed that none of the four SDFs had a triple-helical structure. Scanning electron microscopy showed that SE-SDF had a looser structure and an obvious honeycomb structure than other SDFs. Thermogravimetric analysis, particle size, and zeta potential results showed that SE-SDF had the highest thermal stability, smallest particle size, and excellent solution stability compared with the other samples. The hydration properties showed that SE-SDF had the best water solubility capacity and water-holding capacity. All three modification methods (S, E, and SE) enhanced the sodium cholate adsorption capacity, cholesterol adsorption capacity, cation exchange capacity, and nitrite ion adsorption capacity of pea SDF. Among them, the SE modification had the greatest effect. This study showed that superfine grinding combined with enzymatic modification can effectively improve the SDF content and the physicochemical and functional properties of pea dietary fibre, which gives pea dietary fibre great application potential in functional foods.

7.
Int J Biol Macromol ; : 131601, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38626833

RESUMO

This study investigates the impact of water and salinity stress on Aloe vera, focusing on the role of Aloe vera polysaccharides in mitigating these stresses. Pectins and acemannan were the most affected polymers. Low soil moisture and high salinity (NaCl 80 mM) increased pectic substances, altering rhamnogalacturonan type I in Aloe vera gel. Aloe vera pectins maintained a consistent 60 % methyl-esterification regardless of conditions. Interestingly, acemannan content rose with salinity, particularly under low moisture, accompanied by 90 to 150 % acetylation increase. These changes improved the functionality of Aloe vera polysaccharides: pectins increased cell wall reinforcement and interactions, while highly acetylated acemannan retained water for sustained plant functions. This study highlights the crucial role of Aloe vera polysaccharides in enhancing plant resilience to water and salinity stress, leading to improved functional properties.

8.
Food Chem ; 449: 139179, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574527

RESUMO

Pea proteins lack the desirable functional characteristics for food and beverage applications. In this study, transacylation reaction assisted with ultrasonication was used to glycate pea proteins with propylene glycol alginate to enhance their functional properties. The reaction was carried out at pH 11.0 for different pea protein isolate: propylene glycol alginate mass ratios and time durations in a sonic bath at 40 °C. Glycation was confirmed in gel electrophoresis, and ultrasonication enhanced the glycation, with optimal degrees of glycation observed at 45 min reaction time and mass ratios of 2:1 (37.73%) and 1:1 (35.96%). The transacylation reaction increased random coil content of pea proteins by 28% and enhanced their solubility by 2.02 times at pH 7.0, water holding capacity by >50% at pH 7.0, foaming properties, emulsifying properties, and heat stability. This study offers a novel approach that can enhance functionality and applicability of pea proteins.

9.
J Food Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578118

RESUMO

Taro (Colocasia esculenta) flour is a viable carbohydrate alternative and a functional additive for food formulation; however, different taro varieties may possess distinct characteristics that may influence their suitability for food production. This study evaluated the nutritional, physicochemical, and functional properties of flours from five Hawaiian taro varieties: Bun-Long, Mana Ulu, Moi, Kaua'i Lehua, and Tahitian. Tahitian, Bun-long, and Moi had high total starch contents of 40.8, 38.9, and 34.1 g/100 g, respectively. Additionally, Moi had the highest neutral detergent fiber (25.5 g/100 g), lignin (1.39 g/100 g), and cellulose (5.31 g/100 g). In terms of physicochemical properties, Tahitian showed the highest water solubility index (33.3 g/100 g), while Tahitian and Moi exhibited the two highest water absorption indices (5.81 g/g and 5.68 g/g, respectively). Regarding functional properties, Tahitian had the highest water absorption capacity (3.48 g/g), and Tahitian and Moi had the two highest oil absorption capacities (3.15 g/g and 2.68 g/g, respectively). Therefore, the flours from these Hawaiian taro varieties possess promising characteristics that could enhance food quality when used as alternative additives in food processing.

10.
Food Chem ; 449: 139177, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38581785

RESUMO

Edible insects represent a great alternative protein source but food neophobia remains the main barrier to consumption. However, the incorporation of insects as protein-rich ingredients, such as protein concentrates, could increase acceptance. In this study, two methods, isoelectric precipitation and ultrafiltration-diafiltration, were applied to produce mealworm protein concentrates, which were compared in terms of composition, protein structure and techno-functional properties. The results showed that the protein content of the isoelectric precipitation concentrate was higher than ultrafiltration-diafiltration (80 versus 72%) but ash (1.91 versus 3.82%) and soluble sugar (1.43 versus 8.22%) contents were lower. Moreover, the protein structure was affected by the processing method, where the ultrafiltration-diafiltration concentrate exhibited a higher surface hydrophobicity (493.5 versus 106.78 a.u) and a lower denaturation temperature (161.32 versus 181.44 °C). Finally, the ultrafiltration-diafiltration concentrate exhibited higher solubility (87 versus 41%) and emulsifying properties at pH 7 compared to the concentrate obtained by isoelectric precipitation.

11.
Food Sci Technol Int ; : 10820132241243240, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556930

RESUMO

This study aimed to develop a protein-fiber-rich extruded product based on yellow lentil, quinoa, and pumpkin flours. The final product quality is affected by formulation and extrusion parameters. Therefore, the effect of the pumpkin-flour ratio (A: 25-75%) and feed moisture content (C: 14-22%) besides barrel screw speed (B: 120-180 rpm) on the physical attributes of extrudates was investigated. Box-Behnken experimental design and stepwise-response surface method were used to analyze the effects of various process variables and ingredients on extrudates. The pumpkin-flour ratio had a significant positive correlation with bulk density (BD), water solubility index (WSI), and oil absorption index. Whereas the correlation between pumpkin-flour ratio with hardness, porosity, expansion ratio (ER), and water absorption index (WAI) was negative (P < 0.05). The feed moisture content positively affected the water activity (aw) and WAI and negatively affected the harness of samples (P < 0.05). The screw speed had a positive effect on ER, porosity, and WSI, whereas it negatively influenced the hardness, BD, and aw. By increasing the pumpkin-flour ratio, air cell size and wall thickness of samples had been decreased. The results showed that 44.2% pumpkin flour, 22% feed moisture, and 172.1 rpm screw speed gave an optimized product. There was no significant difference between predicted and experimental values (except for ER). The optimized snack was a good source of fiber (around 15%), protein (17.3%), and antioxidants (TPC = 15.28 mg GAE.g-1 and antiradical scavenging activity (DPPH) = 33.66%). The caloric value of the optimized snack was 362.6 cal.100g-1. The current formulation can be considered as the base of snack food or plant-based meat alternatives.

12.
J Sci Food Agric ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651728

RESUMO

BACKGROUD: This study investigated the structure, functional and physicochemical properties of lotus seed protein (LSP) under different pH environments. The structures of LSP were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fourier transform infrared spectroscopy (FTIR), zeta potential, particle size distributions, free sulfhydryl and rheological property. The functional and physicochemical properties of LSP were characterized by color, foaming property, emulsification property, solubility, oil holding capacity (OHC), water holding capacity (WHC), differential scanning calorimetry analysis (DSC) and surface hydrophobicity. RESULTS: LSP was mainly composed of 8 subunits (18 kDa, 25 kDa, 31 kDa, 47 kDa, 51 kDa, 56 kDa, 65 kDa and 151 kDa), in which the richest band was 25 kDa. FTIR results showed that LSP had high total contents of α-helix and ß-sheet (44.81%-46.85%) in acidic environments. Meanwhile, there were more ß-structure and random structure in neutral and alkaline environments (pH 7.0 and 9.0). At pH 5.0, LSP had large particle size (1576.98 nm), high emulsion stability index (91.43 min), foaming stability (75.69%), water holding capacity (2.21 g g-1), but low solubility (35.98%), free sulfhydryl content (1.95 µmol g-1) and surface hydrophobicity (780). DSC analysis showed the denaturation temperatures (82.23°C) of LSP at pH 5.0 was higher than those (80.10°C, 80.52°C, 71.82°C) at pH 3.0, 7.0, 9.0. The analysis of rheological properties showed that LSP gel had high stability and great strength in alkaline environment. CONCLUSION: The findings were anticipated to serve as a valuable reference for the implementation of LSP in the food industry. This article is protected by copyright. All rights reserved.

13.
Food Sci Biotechnol ; 33(7): 1603-1614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623432

RESUMO

This study used glucose, fructose, maltose and dextran to explore the effects of different carbohydrates on the Maillard reaction of casein phosphopeptides (CPP). The color parameter results showed that heating time from 1 to 5 h led to brown color, which was consistent with the observed increased in browning intensity. Fourier transform infrared spectroscopy results verified that four carbohydrates reacted with CPP to produce Maillard conjugates. Fluorescence spectroscopy showed that the Maillard reaction changed the tertiary structure of CPP by decreasing the intrinsic fluorescence intensity and surface hydrophobicity compared with the CPP-carbohydrate mixture. At the same time, the Maillard reaction effectively improved the emulsifying properties, reducing power and DPPH radical scavenging activity of CPP. Furthermore, this study also found that glucose and fructose improved CPP more than maltose and dextran. Therefore, monosaccharides have good potential in modifying CPP via the Maillard reaction.

14.
Food Chem ; 450: 139293, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38631207

RESUMO

Lentils have a valuable physicochemical profile, which can be affected by the presence of antinutrients that may impair the benefits arising from their consumption. Different treatments can be used to reduce these undesirable compounds, although they can also affect the general composition and behaviour of the lentils. Thus, the effect of different processing methods on the physicochemical and techno-functional properties, as well as on the antinutritional factors of different lentil varieties was studied. Phytic acid was eliminated during germination, while tannins and trypsin inhibitors are mostly affected by cooking. Functional properties were also altered by processing, these being dependent on the concentration of different nutrients in lentils. All the studied treatments affected the physicochemical profile of lentils and their functional properties. Cooking and germination appear to be the most effective in reducing antinutritional factors and improving the physicochemical profile of the lentils, meeting the current nutritional demands of today's society.

15.
Poult Sci ; 103(6): 103701, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38603934

RESUMO

The effect of goose meat sous-vide (SV) cooking at 6 combinations of temperature (60°C, 80°C) and time (4, 6, 12h) on selected functional properties was investigated. The study conducted an assessment of cooking loss (CL), moisture content, pH, longitudinal (LS), and transverse (TS) shrinkage, shear force (SF), texture profile analysis (TPA), color parameters (L*, a*, b*, C, h°), ΔE and carried out sensory evaluation. A total of 168 breast muscles (BM with and without skin) from 17-wk-old "Polish oat geese" were utilized. The CL was affected by both cooking temperature and time. The CL for meat with skin was higher than for without ones, and it was lower for both kinds of meat cooked at 60°C than at 80°C for all cooking times. The LS was higher than the TS. The higher shrinkage was stated for meat cooked at 80°C. There was a reduction in moisture content and slightly increasing pH by increasing temperature and prolonging cooking time. For both kinds of meat, the highest moisture retention was stated at 60°C/4h, and the lowest in samples heated at 80°C/12h. The samples cooked at 60°C were characterized by a higher L* value than those at 80°C. The a* values were higher for samples cooked at 60°C than those at 80°C, whereas b* were higher for meat cooked at 80°C. The SF exhibited a trend of lower values at 60°C compared to samples cooked at 80°C and it increased with prolonged cooking time. The value of hardness, cohesiveness, springiness, gumminess, and chewiness for meat cooked at 60°C increased, and for samples cooked at 80°C decreased with increasing cooking time. It was no significant differences in sensory scores for overall palatability for both kinds of meat cooked at 60°C and 80°C. Goose meat cooked at different time and temperature combinations showed extremely desirable overall palatability. Taking into account all discussed parameters, the optimal combination seems to be 60°C/4h.

16.
Food Sci Nutr ; 12(4): 2551-2566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628173

RESUMO

Cocoa pod husks (CPHs), the major side-stream from cocoa production, were valorized through fermentation with Pleurotus salmoneo-stramineus (PSS). Considering ergosterol as a biomarker for the fungal content, the mycelium accounted for 54% of the total biomass after 8 days in submerged cultures. The crude protein content of fermented CPH (CPHF) increased from 7.3 g/100 g DM in CPH to 18.9 g/100 g DM. CPH fermentation resulted in a high biological value of 86 for the protein. The water and oil binding capacities of CPHF were 3.5 mL/g and 2.1 mL/g, respectively. The particle diameter dv,0,90 of CPHF was 373 µm as compared to 526 µm for CPH. The total dietary fiber was 73.4 g/100 g DM in CPHF and 63.6 g/100 g DM in CPH. The amount of soluble fiber was 2.3 g/100 g DM in CPHF and 10.1 g/100 g DM in CPH; the insoluble fraction accounted for 71.1 g/100 g DM and 53.6 g/100 g DM, respectively. Bread doughs with CPH or CPHF were characterized for texture, color, and farinographic properties. The dough hardness, consistency, and browning index increased with the concentration of CPH, whereas for CPHF, springiness and peak viscosities declined. We demonstrate the upcycling of CPH into nutritious and functional ingredients through PSS fermentation.

17.
Food Chem X ; 22: 101377, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38633741

RESUMO

In this study, the effects on the structures and emulsion gels of carrageenan (CA) and gum arabic (GA) with soybean protein isolate (SPI) were investigated. The results showed that CA and GA exposed hydrophobic groups to SPI, and formed complexes through non-covalent interactions to improve the stability of the complexes. Furthermore, the emulsion gels based on the emulsions exhibited that CA formed emulsion-filled gels with higher elasticity, stronger gel strength, and thermal reversibility, whereas GA formed emulsion-aggregated gels with higher viscosity, and a weak-gel network. The results of digestion showed that, CA was more helpful to slow down the release of free fatty acids and protect vitamin E during digestion. Compared with SPI-GA emulsion gel, SPI-CA emulsion gel had better physicochemical properties and stronger network structure. The results of this study may be useful in the development of anionic polysaccharides that interact with SPI, and they may provide new insights on the preparation of emulsion gels that slowly release fat-soluble nutrients.

18.
Urologiia ; (1): 24-30, 2024 Mar.
Artigo em Russo | MEDLINE | ID: mdl-38650402

RESUMO

AIM: To determine the effect of standard treatment on changes in the structural and functional properties of erythrocytes in obstructive and non-obstructive acute pyelonephritis. MATERIALS AND METHODS: The structural and functional properties of erythrocytes and their intracellular metabolism in 78 patients with a diagnosis of primary non-obstructive and secondary obstructive acute pyelonephritis, randomized by age, gender, and the minimum number of concomitant diseases were investigated. RESULTS AND DISCUSSION: In acute non-obstructive pyelonephritis, changes of the content of proteins in circulating erythrocytes responsible for the structure formation and stabilization of the plasma membrane (-spectrin, anion transport protein, pallidin, protein 4.1), intracellular metabolism (anion transport protein, glutathione-S-transferase), membrane flexibility and shape (actin, tropomyosin) are insignificant, alike from acute obstructive pyelonephritis. In addition, processes of lipid peroxidation inside red blood cells are intensified, and oxidative stress develops with a decrease in the sorption capacity of erythrocytes, as well as the content and ratio of lipid fractions in the plasma membrane, which form the basis of the lipid components and play the main role in the sequencing of protein macromolecules and the normal metabolism of red blood cells. CONCLUSION: In acute obstructive pyelonephritis, changes in the content and ratio of proteins and lipids in the erythrocyte membrane lead to functional rearrangements that are not corrected by standard treatment.


Assuntos
Eritrócitos , Pielonefrite , Humanos , Pielonefrite/sangue , Pielonefrite/metabolismo , Eritrócitos/metabolismo , Feminino , Masculino , Doença Aguda , Adulto , Pessoa de Meia-Idade , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/química
19.
J Sci Food Agric ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655901

RESUMO

BACKGROUND: Whey protein isolate (WPI) generally represents poor functional properties such as thermal stability, emulsifying activity and antioxidant activity near its isoelectric point or high temperatures, which limit its application in food industry. The preparation of WPI-polysaccharide covalent conjugates based on Maillard reaction is a promising method to improve the physical and chemical stability and functional properties of WPI. In this research, WPI-inulin conjugates were prepared through wet heating method and ultrasound method and their structural and functional properties were examined. RESULTS: In conjugates, the free amino acid content was reduced, the high molecular bands were emerged at SDS-PAGE, new C-N bonds were formed in FT-IR spectroscopy, and fluorescence intensity was reduced compared with WPI. Furthermore, the result of CD spectrum also showed that the secondary structure of conjugates was changed. Conjugates with ultrasound treatment had better structural properties compared with those prepared by wet heating treatment. The functional properties such as thermal stability, emulsifying activity index (EAI), emulsion stability (ES) and antioxidant activity of conjugates with wet heating treatment were significantly improved compared with WPI. The EAI and ES of conjugates with ultrasound treatment were the highest, but the thermal stability and antioxidant activity were only close to that of the conjugates with wet heating treatment for 2 h. CONCLUSION: This study revealed that WPI-inulin conjugates prepared with ultrasound or wet heating method not only changed the structural characteristics of WPI but also could promote its functional properties including thermal stability, EAI, ES and antioxidant activity. This article is protected by copyright. All rights reserved.

20.
Ultrason Sonochem ; 105: 106870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579570

RESUMO

The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % ß-sheet, and 43 % ß-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.


Assuntos
Annona , Proteínas de Plantas , Sementes , Solubilidade , Sementes/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Annona/química , Ondas Ultrassônicas , Fenômenos Químicos , Sonicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...